

Business from technology

Water Mist Spray Modeling With FDS

Fire and Evacuation Modeling Technical Conference 2011

<u>Simo Hostikka</u>, Jukka Vaari, Topi Sikanen, Antti Paajanen VTT Technical Research Centre of Finland

SPRAY COMPUTATIONS IN FDS

DRAG REDUCTION BY WAKE EFFECT

INTRODUCING THE DROPLETS INTO THE COMPUTATION

Segment of a spherical surface
P_φ = f(φ)sin φ
f(φ) = exp[-β(μ-x)²], x = φ_{max}-φ/φ_{max}-φ_{min}

Here: β = 5 and μ = 0
Initial velocity: v_{d,0} = C√2ΔP/ρ_d
User specifies the offset distance

9

EXAMPLE NOZZLES

- Spraying systems LN-2
- High-pressure micronozzles A, B and C from Marioff.
- Multi-orifice spray heads

K (l/min/bar ^{1/2})	φ (deg)	d _m (µm)	γ	σ
0.347	38	72	2.1	_ .
0.2	10	83	2.9	0.4
0.433	12	79	2.26	0.5
0.767	14	102	2.59	0.52
	K (l/min/bar ^½) 0.347 0.2 0.433 0.767	K ϕ (l/min/bar ^{1/2})(deg)0.347380.2100.433120.76714	K (l/min/bar ^{4/2}) ϕ (deg) d_m (μ m)0.34738720.210830.43312790.76714102	K (1/min/bar ^{3/2}) ϕ (deg) d_m (μ m) γ 0.34738722.10.210832.90.43312792.260.767141022.59

	SH1	SH2	SH3	SH4	SH5
Centre nozzle	Α	С	В	В	В
Perimeter nozzle	А	В	А	В	В
Number of	6	6	8	8	8
perimeter					
nozzles					
Perimeter angle	60	60	45	45	30
(deg)					

Suunta 2

.2)

(2)

.1)

Suunta

Þ

Q-3-4-

Suunta 3

-667

RESULTS: SPRAY PROFILES (LN-2 NOZZLE)

- 0.4 m below the nozzle
- 20 bar pressure

VIT

RESULTS: SPRAY PROFILES (A, B, C NOZZLES)

1 m below the nozzle70 bar pressure

AIR ENTRAINMENT TESTS

- Rectangular channel 2.0 m \times 0.6 m \times 0.6 m
- Multi-orifice nozzles in the middle of the channel
- Pressures 50...10 bar
- Air speed measurement 0.5 m upstream (center and 6 cm from wall)

RESULTS: AIR ENTRAINMENT

- SH4 and SH5 have different perimeter angles
- Difference in momentum transfer difficult to capture
- Results were sensitive to offset value

RADIATION ATTENUATION TESTS

- LPG gas heater
 - 0.2 m × 0.3 m
 - Temperature 950 °C
- Nozzles A, B and C
- 50, 70 and 100 bar
 - Experimental uncertainty < 7 %

16

RADIATION ATTENUATION SIMULATIONS

Two sets of simulations

- Set 1 = 'good resolution'
- Set 2 = 'even better'

Numerical parameter	Set 1	Set 2
Spatial resolution (Δx)	2.0 cm	1.0 cm
Angular resolution N_{Ω}	1000	5000
Droplet insertion rate	$1 \times 10^{5} 1/s$	$1 \times 10^{6} 1/s$
Droplet CFL-condition	∞	1.0

RADIATION ATTENUATION RESULTS

Set 2

Set 1

18

RADIATION ATTENUATION SENSITIVITY STUDY

 $\Delta x = 2.0 \text{ cm}$ DROP INSERT RATE = 1×10⁵ 1/s

 $\Delta x = 1.0 \text{ cm}$ DROP INSERT RATE= 1×10⁵ 1/s

20

ACKNOWLEDGEMENTS

- Spray profile measurements were performed by Maria Putkiranta, Riina Rajala, Pentti Saarenrinne and Markus Honkanen of the Tampere University of Technology.
- Co-operation with the members of the FDS development team
- Funding
 - Finnish Funding Agency for Technology and Innovation,
 - Marioff Corporation Oy,
 - Rautaruukki Oyj,
 - YIT Kiinteistötekniikka Oy
 - Insinööritoimisto Markku Kauriala Ltd.