
Performance Analysis

and

Shared Memory Parallelisation of FDS

Fire and Evacuation Modeling Technical Conference 2014

Gaithersburg, September 8-10 2014

Daniel Haarho↵, Lukas Arnold

email: l.arnold@fz-juelich.de

Jülich Supercomputing Centre
Institute for Advanced Simulation

Forschungszentrum Jülich GmbH, Germany

Provokative Motivation

Q: Why did you use THIS grid resolution?

A: To have the simulation done by tomorrow.

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 5

Motivation and Computer Architecture

Why shared memory / hybrid parallelisation in FDS?

I make use of more hardware resources

I soften resource limitation due to mesh boundary placement

memory

socket'

memory

socket'

node'

node interconnect

core core

core core

core core

core core

Motivation for hybrid parallelisation

I hierarchical communication
structures

I non-uniform memory access

Parallelisation approach

I OpenMP on compute nodes /
sockets (shared memory)

I MPI for inter-node communication
(distributed memory)

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 6

Selected Programming Modells

MPI

I dispach of processes, each assigned a rank

I explicit communication of boundaries / memory
managed by programmer

I needs change of algorithms and data structures

OpenMP

I fork the main process into multiple threads

I all threads access the same memory, i.e. no
explicit memory transfers

I in simplest case only loops need to be adopted

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 7

OpenMP Example

task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8

task 1

task 2

task 3

task 4 task 5 task 6

task 7

task 8 master

thread 1

thread 2

master

execution time

se
ria

l
ex

ec
ut

io
n

pa
ra

lle
l

ex
ec

ut
io

n

1 !$OMP PARALLEL DO
2 do i = 1, length
3 r(i) = a(i) + b(i)
4 end do
5 !$OMP END PARALLEL DO

I lines 2-4: simple FORTRAN loop to sum
arrays a and b into r

I line 1: fork OpenMP threads for loop
parallelisation, automatic load balancing

I line 5: join the threads

However, reality isn’t that easy...

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 8

OpenMP Challenges (Examples)

Parallel Task
Identification

I simple indepentent loop iterations are fine

I a compiler is not able to check for in complex loops

! programmer must check for himself

Data Races

I concurrent data write access

I neither compiler nor the hardware may prevent it

! programmer must take care for

Loop Carried
Dependencies

I loop iterations depend on previous interations

I only algorithmic restructure may help

! programmer must redesign algorithm

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 9

Tophat Filter – Loop Restructure

Not suitable for OpenMP:

I muliple nested loops

I function call (filter kernel) and
memory copies

K"

J"

I"

K"

I"

J"

I"

J"

K"

Loop restructure

I combine all loops (outer + kernel)
into a single simple loop

I execute outer loop (K) in parallel K"

J"

I"

3x3"

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 10

Wall Loops – Atomic Operations

T1#

T2#
I threads access the same cells

I results in a race condition

1 WALL_LOOP2:
2 DO IW=1, N_CELLS
3 [...]
4 SELECT CASE(IOR)
5 CASE(1)
6 !$OMP ATOMIC WRITE
7 RHO_DZDX(I-1,J,K) = RHO_DZDN
8 !$OMP END ATOMIC
9 [...]

I line 6+8: instruct OpenMP to
restrict concurrent access

I introduces overhead

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 11

Radiation Solver – Loop Carried Dependencies

0 1 2 3 4

0

1

2

3

4

0 4

0

4 4

3

2

1

0

5

4

3

2

1

6

5

4

3

2

7

6

5

4

3

8

7

6

5

4

Figure 3: The propagation of radiation in the radiation solver has a loop-carried dependency. The dependencies structure is illus-
tration in a simplified 2D example on the left. Here the information flow is indicated by arrows. One can observe the
wavefront of independent cells that moves through the mesh. The right depicts the sum of the x- and y-indices for each
cell. These conform with the wavefronts and can be parallelised over.

ACHIEVED PERFORMANCE

It is important to distuingish speedup from perfor-
mance. Speedup is a relative measure and de-
pends upon the baseline that is used, usually the
runtime of the serial executable. Bad serial perfor-
mance will therefore usually lead to better speedups
[Hager & Wellein, 2010].

This is why it is important to also have some form
of absolute measure of performance. One way of do-
ing this is calculating the number of cells that have
been updated per second. This allows the comparison
of various problem sizes as well as numbers of threads
used.

Such a metric can be calculated thanks to the in-
formation provided by the FDS out files. These re-
port the runtime required by the time steps as well as
the mesh dimensions of the simulation. Taking these
number we can calculate the cell calculations per sec-
ond. Two things may distort this metric in FDS: the
pressure solver and the stability checks. The pressure
solver might take several or even hundreds of itera-
tions before it achieves results below the allowed ve-
locity error. And whenever the stability checks fail the
predictor step is rerun with a smaller time step. Which
means that the metric is not only dependant upon the
computational cost of the solvers but also upon the
case being simulated.

The benchmark case used for this work only re-
quires a single pressure iteration and does not run into
stability issues. The number of pressure iterations

for each timestep is reported but since the pressure
solver only constitus a part of the predictor correc-
tor scheme one can not simply normalise the metric
with this number. Which means that benchmarks with
other cases need to be checked with regard to these
two issues prior to using this metric.

Benchmark Setup

As FDS is a very flexible software and is applied to a
wide range of scenarios, it is difficult to find a repre-
sentative benchmark scenario. Yet, the bench2 input
file, which is shipped with FDS, provides a reasonable
compromise.

The slightly modified input consists of

• a computational domain 1.6m x 1.6m x 3.2m,
• equally discretised with varying number of grid

cells, whereas in the following the sizes are ab-
breviated by 1k = 1024 and 1M = 1k · 1k,

• a simple polyurethane burner with a power of
180kW, and

• soot particle tracing.

The following measurements are based on FDS
version 6.1, compiled with version 13.1 of the Intel
compiler. The computer systems used for benchmark-
ing are outlined in Table 2.

As the measurement of execution time is essen-
tial during software parallelisation. The main perfor-
mance measuring tools used in this work are scalasca
[scalasca] and VTune [vtune]. A characteristic profile

I a simple index looping prevents parallelisation

I idea: parallel execution inside of wavefronts

I forced to restructure algorithm

I new one computes the same results

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 12

Benchmark – FDS Scenario and Computer Systems

I bench2 input shipped with FDS

I various grid sizes

I fixed number of pressure iterations

workstation juropa2 juropa3

processor(s) i7-2600 2x Xeon X5570 2x Xeon E5-2650
clockspeed 3.4 GHz 2.93 GHz 2.0 GHz
cores (threads) 4 (8) 8 (16) 16 (32)
cachesize 8 MB 8 MB 20 MB
memory bandwidth 21 GB/s 32 GB/s 51.2 GB/s

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 13

Tools – Scalasca

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 15

Tools – VTune

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 16

Serial Timing

Top-Down View

function t[s] t[%]

divergence_part_1 48.4 33.7
compute_velocity_flux 20.0 13.9
mass_finite_differences 15.9 11.1
compute_radiation 13.4 9.3
update_particles 7.4 5.2

Buttom-Up View

function t[s] t[%]

scalar_face_value 14.8 15.9
get_sensible_enthalpy_diff 4.0 4.3
loop,l.1012,radiation_fvm 3.7 4.0
loop,l.151,div._part_1 2.4 2.6
loop,l.672,velocity_flux 2.4 2.6

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 17

Parallelised Routines

TABLES

Runtimes s

Function Serial OpenMP Parallel Percentage

divergence_part_1 37.4 16.8 82.8
species_advection 9.7 4.6 78.4
radiation_fvm 9.6 7.3 87.5
compute_viscosity 7.3 3.4 79.4
enthalpy_advection 7.0 3.5 69.5
mass_finite_differences 7.0 3.9 75.7
velocity_flux 6.7 3.2 97.2
density_advection 4.8 2.4 65.4
pressure_solver 4.0 5.0 17.2
test_filter 2.0 0.6 99.4
baroclinic_correction 1.8 1.1 99.8
openmp_check 0.0 0.0 6.0

Table �: Parallelisation of all OpenMP routines
The runtime of all routines parallelised with OpenMP. Apart from the initial openmp_check
all instrumentation was performed as part of this work. The length of the bar indicates the
percentage each routine contributes to the serial runtime. The blue bar indicates the percentage
of this runtime that is running in parallel.

Function s Percentage

divergence_part_1 5.6 18.3
dump_mesh_outputs 5.5 17.9
compute_radiation 3.6 11.9
init_radiation 2.6 8.6
compute_velocity_flux 2.4 7.8
pressure_iteration_scheme 2.1 6.8
mass_finite_differences 1.4 4.5
density 1.2 3.8

Table ��: OpenMP vTune topdown profile (top�)
The inclusive time spent in the functions directly called by the main program of FDS. This
profile was created using the customised bench2 case and the vTune topdown view. Only the
seven highest are shown. For a full listing see Table ��.

��

I all changed routines are working fine

I an adequate parallelisation level in these routines was reached

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 18

OpenMP Scaling

I speedup increases with larger grids

I hyperthreading is
contra-productive

I maximal speedup of two

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 19

Overall Parallelisation

TABLES

Elementwise multiplication Runtime (s)

Fortran Intrinsic ��
Manual decomposition ��

Table �: Benchmark of Elementwise Multiplication
The application of the tophat filter kernel for the LES equations requires an elementwise multi-
plication. This can be implemented using a Fortran intrinsic for elementwise multiplication or
by manually decomposing the operation into three loops. The results of a micro-benchmark
show a speedup of four for the latter method.
The filter operation was applied to the bulk (no outer shell) of a cubic �D array with an edge
length of ��. The filter was applied ��.��� times and the total time measured using cpu_time.
The benchmark was compiled using ifort -O2 on an i�-���� (my personal workstation).

Serial OpenMP (� threads)

Function s % s Parallel Percentage

MAIN 94.7 100.0 66.5 39.7
DIVG 29.5 31.2 15.4 19.9
MASS 9.9 10.4 6.7 4.5
VELO 16.6 17.5 9.5 9.9
PRES 4.0 4.2 5.0 0.0
WALL 3.9 4.1 4.0 0.0
DUMP 6.2 6.6 7.6 0.0
PART 6.8 7.2 6.9 0.0
RADI 12.7 13.4 6.2 9.2
FIRE 2.1 2.2 2.1 0.0
COMM 0.0 0.0 0.0 0.0

Table �: FDS measured parallelisation
The runtime of the various modules as reported by FDS for the serial binary and the OpenMP
binary running with four threads. The length of the bar indicates the percentage each module
contributes to the serial runtime. The blue bar indicates the percentage of this runtime that is
running in parallel (calculated according to Equation �.�).

Runtimes s

Function Serial OpenMP Parallel Percentage

divergence_part_1 37.3 16.8 82.8
compute_velocity_flux 14.2 6.6 89.2
compute_radiation 9.6 7.3 87.6
compute_viscosity 7.3 3.4 79.5
mass_finite_differences 7.0 3.9 75.9
update_particles 7.0 7.3 0.0
dump_mesh_outputs 6.5 7.5 0.0

Table �: Parallelisation in level one routines
The runtime of the various modules as reported by FDS for the serial binary and the OpenMP
binary running with four threads. The length of the bar indicates the percentage each routine
contributes to the serial runtime. The blue bar indicates the percentage of this runtime that is
running in parallel (calculated according to Equation �.�).

��

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 20

Amdahl’s Law

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 21

OpenMP Performance

I cell updates increase with number of threads used

I the performance stagnates above the 512k grids

I memory access performance as potential bottleneck

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 22

Hybrid Scaling

I MPI o↵ers much greater speedup, w.r.t. the pure OpenMP version

I hybrid (MPI and OpenMP) use is possible

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 23

Summary

I easy to use: just by setting OMP NUM THREADS and if necessary
OMP STACKSIZE to achieve a speedup of two on four cores

I di�cult to programm: many pitfalls are only trackable with tools like
VTune, algorithmic restructure needed

I MPI outperforms OpenMP

I in general: the achieved performance / scaling is bad

I in the FDS context: it is fine

Daniel Haarho↵ and Lukas Arnold, FEMTC 2014, September 8-10 2014, Gaithersburg Slide 24

