One-dimensional model of pyrolysis and ignition of medium density fiberboard subjected to transient irradiation

Izabella Vermesi

Guillermo Rein Department of Mechanical Engineering Imperial College London

Gaurav Agarwal

Marcos Chaos

LLNL

15.11.2016 Torremolinos, ES

Presentation Outline

What is Pyrolysis?

Pyrolysis

= the process through which the solid undergoes a chemical decomposition and transforms into a gaseous fuel

Importance of Pyrolysis

Constant vs. transient

Imperial College London

Transient scenario: state of the art

- Linear ramps:
 - Wood: Univ. Zaragoza (2000), USTC (2007), USTC (2016)
 - MDF: FM Global (2016)
 - Polymers: Univ. Edinburgh (2012)
- t² parabolic heat flux:
 - Wood: USTC (2016), Univ. Waterloo (2016)
- Parabolic pulses:
 - Forest fuels: Univ. Exeter (2015)
 - PMMA: Imperial College (2015)
 - MDF: Imperial College (2016)

Vermesi et al., Combust. Fl. 2016

Imperial College London

Vermesi et al., Combust. Fl. 2016

Vermesi et al., Combust. Fl. 2016

Imperial College

London

Medium density fiberboard

http://ifabstudio.com/wp-content/uploads/2014/03/MDF_DETALE.jpg

- Engineered wood product obtained from wood fibers glued together under heat and pressure
- Use in the indoor built environment: furniture, separating walls

MDF experiments

- FPA experiments using MDF samples with thickness of 30 mm
- Surface temperature measured with an IR pyrometer, mass loss measured with load cell

Irradiation Curves

MDF model

- 1D model in Gpyro (Lautenberger, Fire Saf. J., 2009)
- Boundary conditions:

 $-\,\bar{k}\frac{\partial T}{\partial z}=0$

$$-\bar{k}\frac{\partial T}{\partial z} = \bar{\varepsilon}\dot{q}_e^{"} - h_c(T_s - T_0) - \bar{\varepsilon}\sigma(T^4 - T_0^4)$$

• Energy equation:

$$\frac{\partial(\bar{\rho}\bar{h})}{\partial t} = \frac{\partial}{\partial z} \left(\bar{k}\frac{\partial T}{\partial z}\right) + \left(-\dot{\omega}_{di}^{\prime\prime\prime}\right)\Delta H_s - \frac{\partial\dot{q}_r^{\prime\prime}}{\partial z}$$

• Arrhenius equation for pyrolysis rate

$$\dot{\omega}_{i} = \frac{\partial m_{i}''}{\partial t} = m_{i0}'' A_{i} e^{-E_{i}/RT} \left(\frac{m_{i}''}{m_{i0}''}\right)^{n_{i}}$$

MDF model

 $\begin{aligned} wet \ wood \rightarrow dry \ wood + water \ vapour \qquad (drying) \\ hemicellulose \rightarrow char + pyrolyzate \qquad (hc) \\ cellulose \rightarrow char + pyrolyzate \qquad (cc) \\ lignin \rightarrow char + pyrolyzate \qquad (lc) \\ resin \rightarrow char + pyrolyzate \qquad (rc) \end{aligned}$

MDF model

wet wood $\rightarrow dry \ wood + water \ vapour$	(drying)
$hemicellulose \rightarrow char + pyrolyzate$	(hc)
$cellulose \rightarrow char + pyrolyzate$	(cc)
$lignin \rightarrow char + pyrolyzate$	(<i>lc</i>)
$resin \rightarrow char + pyrolyzate$	(rc)

Kinetic constants							
Parameter	drying	hc	cc	lc	rc	Units	Reference
Pre-exponential factor log A	8.12	12.9	13.6	16.3	13.6	$\log(s^{-1})$	Li, Huang et al., 2014
Activation energy E	67.8	165	189	238	149	$\rm kJ/mol$	Li, Huang et al., 2014
Heat of pyrolysis ΔH	0	256	256	256	256	kJ/kg	Li et al., 2015
Reaction order n	2.37	2.4	0.84	10.4	4.7	-	Li, Huang et al., 2014

MDF model

wet u	$pood \to dr$	ry woo	pd + w	ater va	pour	(drying))	
$hemicellulose \rightarrow char + pyrolyzate$ (hc)								
$cellulose \rightarrow char + pyrolyzate$ (cc)								
$lignin \to char + pyrolyzate$ (lc)								
$resin \rightarrow char + pyrolyzate$ (rc)								
Kinetic constants								
Parameter	drying	hc	cc	lc	rc	Units	Reference	
Pre-exponential factor log A	8.12	12.9	13.6	16.3	13.6	$\log(s^{-1})$	Li, Huang et al., 2014	
Activation energy E	67.8	165	189	238	149	m kJ/mol	Li, Huang et al., 2014	
Heat of pyrolysis ΔH	0	256	256	256	256	kJ/kg	Li et al., 2015	
Reaction order n	2.37	2.4	0.84	10.4	4.7	-	Li, Huang et al., 2014	
Temperature dependent properties								
Property		V	Value	Expone	ent Val	ue Units	Reference	
Thermal conductivity k		(0.12	0	.49	W/mł	K Li et al., 2013	
Density ρ		605		-		kg/m ³	³ measurement	
Specific heat capacity c_p		1489		0.85		J/kgK	Li et al., 2013	
Surface emissivity of MDF ϵ			0.8	-			Boulet et al., 2012	
Thermal conductivity of char	k_{char}	(0.09	3	.90	W/mI	K Li et al., 2013	
Density of char ρ_{char}			330		-	kg/m ³	Li et al., 2013	
Specific heat capacity of char	$c_{p,char}$		600	1	.15	J/kgK	Li et al., 2013	

MDF results: constant irradiation

Imperial College London

MDF results: constant irradiation

Imperial College London MDF results: transient irradiation

Imperial College London MDF results: transient irradiation

 Thermal properties that remain constant with temperature vs. temperature-dependent properties

• Influence of the drying step in the kinetics scheme

Imperial College London Constant vs. temperature dependent properties

Influence of drying

Imperial College London

22

Conclusions

- MDF subjected to transient irradiation ignited in all scenarios
- MDF experiments modelled in 1D in Gpyro (no optimization, only values from literature and measurements)
- Surface temperatures are well predicted for both materials
- Mass loss rate is predicted qualitatively
- Drying is an essential step in modelling MDF
- Using temperature dependent properties improves the results slightly, but is not as influential as drying

Thank you for your attention! Questions?

Acknowledgements:

