FEMTC2018

EFFICIENCY OF THE FIRE SAFETY SYSTEM, BASED ON FIRE DYNAMICS SIMULATOR (FDS)

Model Applied to a Data Center

Wilson Nobre Lima & Aristides Lopes da Silva University of Cape Verde FEMTC - Maryland October 1st to 3rd, 2018 Thunderhead Engineering

Goal Introduction

Physical Model

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

The risk of fire is present, practically in all places built and frequented by humans [3]

Conclusion

The **objective** of this work is designing a model, based on the FDS, which allows for analyzing the efficiency of the fire safety system of the Data Center of Cape Verde, examining temperature predictions and local pressure measurements.

FEMTC2018

Physical Model

Physical Model

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

02

This work focused on the study of the Data Center in Cabo Verde, where only the **mesh of the safe room** was examined, as the area of greatest turbulence due to the fire source location

FEMTC2018	Model Applied to a Data Center					
Goal	Simulation Scenario					
Physical Model	The model was designed according to the existing fire safety system, based on IG-55 extinction gas.					
Simulation Scenario	To extract the results, devices were distributed accordingly to the existing system and additional devices were inserted to					
Grid Sensitivity Analysis	extract re	esults.				
Result Analysis	Devices	Thermocou ples	Gas-Phase	Supply (Nozzles)	Smoke Detectors	Heat Detectors
		Thermo_	Pre_	NC_SR	SD(C/F)_SR	Heat_D
Conclusion	Label	0				0

Simulation Scenario

Physical Model

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

To achieve this, holes were modeled, that only activate when the pressure value is equal to or greater than 270Pa measured by the gas-phase device. [7]

FEMTC2018

Grid Sensitivity Analysis

Physical Model

Simulation **Scenario**

Grid **Sensitivity** Analysis

Result Analysis

Conclusion

This figure presents the temperature trends at 30s of simulation measured by the devices, according to the different cells dimensions analyzed.

N4

FEMTC2018 **Grid Sensitivity Analysis** Goal The machine used is a server with the following characteristics: **Physical** Windows System Server 2012 R2 Standard based on a 64bit, **Model** Intel(R) Xeon(R) CPU X5675 @ 3.07GHz, processor with 16GB Simulation of RAM. **Scenario** Grid ■CPU ■RAM ■Run Time **Sensitivity Analysis** 100% %66

100% 100% 98% 13:28:37 04:48:50 17% 15% 01:34:37 13% 13% 12% 00:41:29 00:33:03 TEST1 0.20 M TEST2 0.16 M TEST3 0.12 M TEST4 0.12 M TEST5 0.08 M

04

Result

Analysis

Conclusion

Final Model Summary

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

• The Safe Room was the subject of the scenario;

- It was initially designed with a fire power of **300kW/m2**;
- It was examined through INIT REGIONS, with an initial environment temperature of 22°C within the Cube and 26°C outside of it;
- It was performed **30s simulation** with a **time step of 0,14s**;
- It was used a mesh size of 0.16 m;

We must note that all this parameters would influence the results. Thus, it becomes crucial to review these aspects for future studies that will be conducted on this model.

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

Result

Analysis

22°C. Theoretically larger temperature values was expected close to the fire source, although the different levels of positioning devices, Thermo 1, 2 and 3 have influenced these measurements

Regarding the temperature, initially in the safe room it was

Conclusion

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

Result Analysis

Conclusion

It can be seen that there is an increasing temperature trend at these specific points, and these results can be used as benchmarks for future studies and analysis.

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

Result Analysis

Conclusion

Analyzing the spread of smoke, and gas activation, there is evidence of consistent results, signifying that as a research tool the model is useful in some situations, in particular fire situations.

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

Result Analysis

Conclusion

The activation of the gas was allowed by measuring obscurity by

smoke detectors, specifically, the controller works after

obscuration reaches the smoke detectors, where an obscuration

20.00

10.00

0.0

5.00

10.00

15.00

20.00

Time (s)

25.00

30.00

35.00

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

Regarding local pressure, theoretically, an increase in pressure after the gas injection was expected, since there was no system of pressurization parsed inside the Cube

FEMTC2018

Physical Model

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

Result Analysis

To gain a better understanding of this result, a scenario was examined in which the exhaust and fans for hot and cold air were disabled

FEMTC2018

Goal

Physical Model

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

The model proposed in this study allows decision-making in some security cases, particularly fire cases in the safe room, avoiding costs and possible damage caused by a real simulation. Likewise, the results of the grid sensitivity analysis can be used to enhance performance in future simulations, saving rendering time and reducing computational effort.

References

Conclusion

[3] Miller, R. (April 20th, 2014). Data Center Fire Leads to Outage for Samsung Devices. Journal Post. Obtained from Data Center Knowledge: http://www.datacenterknowledge.com

[7] Swenson, D. (18th of November, 2014). Modeling a Pressure Relief Vent. Obtained from Thunderhead Engineering: https://www.thunderheadeng.com/2014/11/modeling-pressure-reliefvent/

Future Works

Physical Model

Goal

FEMTC2018

Simulation Scenario

Grid Sensitivity Analysis

> Result Analysis

Conclusion

 Designing a model based on a Pathfinder and EVAC module from FDS that allows for the analysis of the building structure and influences decision making for emergency cases, especially evacuation, in this data center.

FEMTC2018

EFFICIENCY OF THE FIRE SAFETY SYSTEM, BASED ON FIRE DYNAMICS SIMULATOR (FDS)

Model Applied to a Data Center

Thank You

Obrigado

Wilson Nobre Lima & Aristides Lopes da Silva University of Cabo Verde