Natural Ventilation of a Short Road Tunnel – Application of FDS+EVAC

Katie McQuade-Jones and Matt Bilson WSP USA

wsp

DECK PARK OVERBUILD

wsp

DECK PARK OVERBUILD

NSD

CODE REQUIREMENTS: NFPA 502

Section 11.1.1:

Emergency ventilation shall not be required in tunnels less than 3280 feet in length, where it can be shown by an engineering analysis that the level of safety provided by a mechanical ventilation system is equaled or exceeded by enhancing the means of egress or the use of natural ventilation.

wsp

CODE REQUIREMENTS: NFPA 502

Section 11.1.1:

Emergency ventilation shall not be required in tunnels less than 3280 feet in length, where it can be shown by an engineering analysis that the level of safety provided by a mechanical ventilation system is equaled or exceeded by enhancing the means of egress or the use of natural ventilation.

How do we show equivalent level of safety quantitatively?

\\S])

EXISTING SHORT TUNNELS

Name	Length m (ft.)	Urban / rural	Traffic	Year	Ventilation
15 Tunnel, Seattle, WA	167 (547)	U	Uni	1988	Natural
Dyer Avenue, New York	168 (550)	U	Bi	*	Mechanical
Rockville, Intercounty Conn, Maryland	195 (640)	R	Bi	2010	Natural
Pasadena, 1210, California	271 (889)	U	Uni	2003	Natural
College Avenue Tunnel, Milwaukee, WI	277 (910)	U	Uni	2010	Mechanical

NSD

DEFINING LEVEL OF SAFETY

NFPA 502 Section 11.2.2:

In all cases, the desired goal shall be **to provide an evacuation path for motorists** who are exiting from the tunnel and to facilitate fire-fighting operations.

DEFINING LEVEL OF SAFETY

NFPA 502 Section 11.2.2:

In all cases, the desired goal shall be **to provide an evacuation path for motorists** who are exiting from the tunnel and to facilitate fire-fighting operations.

— Use tenable egress path criteria to demonstrate safety

TENABLE EGRESS PATH CRITERIA

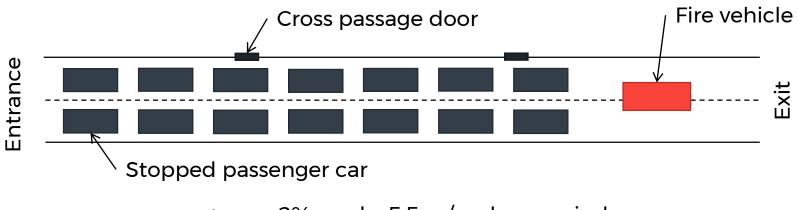
- Traditional methods use visibility > 10 m to define tenability
- For some fire scenarios in short tunnels, might not be able to show visibility of 10 m (e.g. fuel tanker fire)

TENABLE EGRESS PATH CRITERIA

- Traditional methods use visibility > 10 m to define tenability
- For some fire scenarios in short tunnels, might not be able to show visibility of 10 m (e.g. fuel tanker fire)

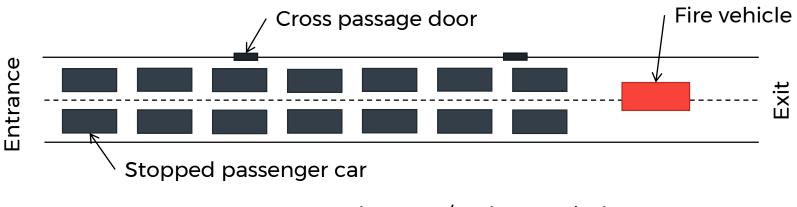
- Fractional effective dose (FED) and fractional irritant concentration method
- Track FED of toxic gases and heat exposure
- Track FIC of toxic gases
- Set criteria so more susceptible occupants can self evacuate

10


<u>NS</u>E

TENABLE EGRESS PATH CRITERIA

- Toxic gas FED based on Purser's equation (used in EVAC)
- Heat exposure FED calculated based on NFPA 502
 Annex B equations
 - Output visibility and temperature profiles to calculate this for a theoretical occupant
- To be considered a passing result:
 - Toxic gas FED < 0.3
 - Heat exposure FED < 0.3
 - Toxic gas FIC < 0.3

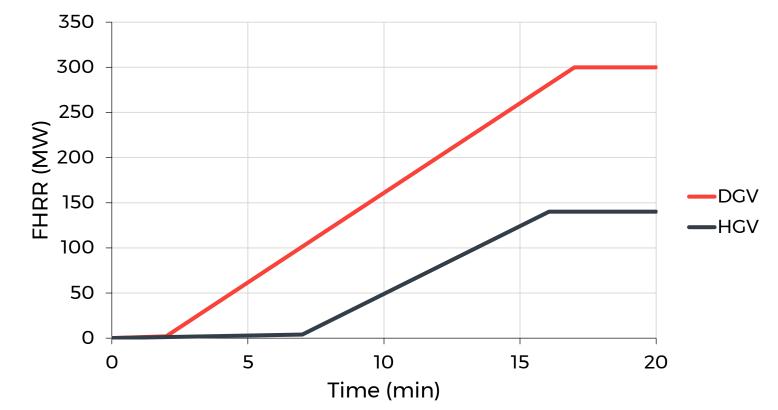

\\S[]

SCENARIO SCHEMATIC

← +2% grade, 5.5 m/s adverse wind

SCENARIO SCHEMATIC

 \leftarrow +2% grade, 5.5 m/s adverse wind


- Dangerous goods vehicle (DGV) fires versus heavy goods vehicle (HGV) fires
- Quantity of egress doors
- Length of tunnel (600 ft. and 1000 ft.)
- 2 lane vs. 6 lane tunnels

13

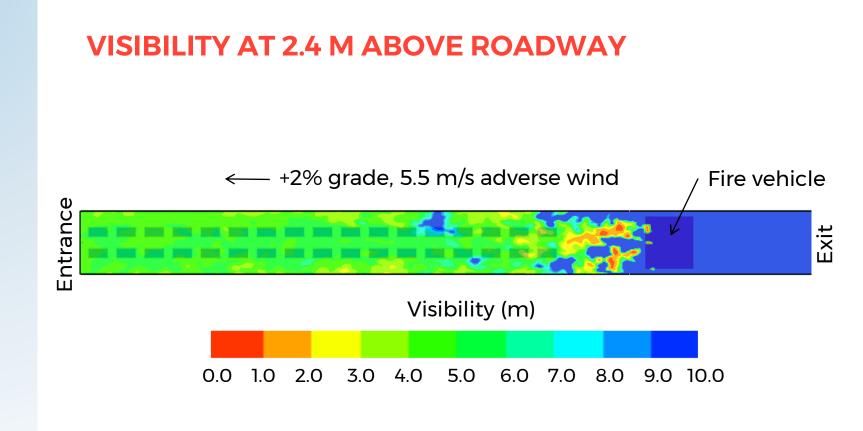
\\S])

FIRE SCENARIO

Fire heat release rate curves

14

NS [

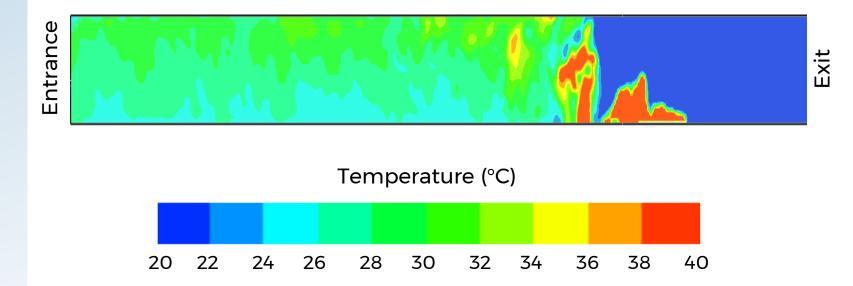

COMBUSTION REACTION

- Emissions from an experimental vehicle fire used as a basis (Lonnermark and Blomqvist)
- Reaction included: CO, NO₂, HCN, HCl, SO₂, C₃H₄O, and CH₂O, soot
- All species included in FDS+EVAC FED/FIC calculation

RESULTS SUMMARY

Length (m)	Lanes	Design fire	Provisions to meet NPFA 502 with natural ventilation				
180	2	HGV	Portal egress				
180	2	DGV	Additional egress doors				
180	6	DGV	Portal egress				
305	2	HGV	Additional egress doors				
305	6	DGV	Additional egress doors				

vsp

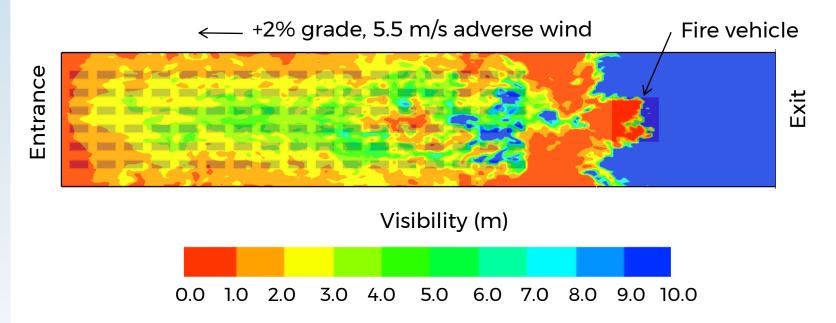

— 180 m tunnel, HGV fire

- Slice taken at 310 seconds (last occupant exits)

17

<u>NS</u>D

SECTION VIEW OF TEMPERATURE


— 180 m tunnel, HGV fire

- Slice taken at 310 seconds (last occupant exits)

18

\\S])

VISIBILITY AT 2.4 M ABOVE ROADWAY

- 180 m tunnel, DGV fire
- Slice taken at 335 seconds (last occupant exits)

19

<u>NS</u>E

RESULTS SUMMARY

 Results are consistent with recent work by Purser, suggesting that occupants can move through visibilities of 2 m for 20-60 minutes

 Can use this quantitative approach to form a basis for approval by the authority having jurisdiction (AHJ)

SIMULATIONS

Case number	Ventilation	Egress doors	FHRR (MW)	Tunnel length	Lanes	Max. FED, toxic gases	Max. FED, heat	Max. FIC	Pass/ fail
FEM-01-01	Natural	0	300	180	2	0.081	1.00	1.00	Fail
FEM-01-02	Mechanical	0	300	180	2	0.003	0.02	0.20	Pass
FEM-01-03	Natural	2	300	180	2	0.013	0.00	0.05	Pass
FEM-01-04	Natural	0	140	180	2	0.002	0.01	0.05	Pass
FEM-01-05	Mechanical	0	140	180	2	0.002	0.01	0.05	Pass
FEM-01-06	Natural	2	140	180	2	0.001	0.00	0.05	Pass
FEM-01-07	Natural	0	300	180	6	0.003	0.02	0.20	Pass
FEM-01-08	Mechanical	0	300	180	6	0.001	0.01	0.10	Pass
FEM-01-10	Natural	0	140	305	2	0.012	0.06	0.35	Fail
FEM-01-11	Mechanical	0	140	305	2	0.002	0.01	0.05	Pass
FEM-01-12	Natural	0	300	305	6	0.067	0.20	0.55	Fail
FEM-01-13	Mechanical	0	300	305	6	0.001	0.01	0.10	Pass

NSD