PROCEEDINGS, FIRE AND EVACUATION MODELING TECHNICAL CONFERENCE (FEMTC) 2020 ONLINE CONFERENCE, SEPTEMBER 9-11, 2020

CFD Study on the Interaction between Water Sprays and Longitudinal Ventilation in Tunnel Fires

Patricio Valdés G

IDIEM - INVESTIGACIÓN, DESARROLLO E INNOVACIÓN DE ESTRUCTURAS Y MATERIALES PLAZA ERCILLA 883 SANTIAGO, REGIÓN METROPOLITANA, 8320000, CHILE E-MAIL: PATRICIO.VALDES@IDIEM.CL

Outline of the Presentation

- 1 Introduction
- 2 Methodology
- 3 Experimental Work
- 4 Numerical Set-Up
- 5 List of Simulations
- 6 Results & Discussion
- 7 Conclusions

Photo via Satra engineering company. www.satra.cz

1. Introduction

General & Scope

To study the interaction of water spray and the backlayering in tunnel fires by means of CFD simulations, in order to investigate the effect of water spray on length and stratification of the backlayering.

Specifics

- To assess CFD capabilities to predict experimental results that will be obtained in a medium-scale set-up.
- To analyse the effect of water spray on the length and thickness of the smoke back layer using a CFD package, namely the Fire Dynamics Simulator (FDS).

1. Introduction

Summary

- A tunnel fire will be modelled.
- The tunnel is equipped with longitudinal ventilation & spray nozzles system.
- The main three scenarios will correspond to three different pressure in the spray system (0.5, 0.7 & 0.9 MPa) operating when the longitudinal ventilation is working.
- Extra scenarios has been modelled in order to asses a sensitivity analysis and obtain data for comparison.

2. Methodology

3. Experimental Work

Photos via Wuhan University of China

3. Experimental Work

HRRPUA	Area	Nº of Pan	HRR
kJ/(m2*s)	m2	Unit	kW
384.1	0.5	2	384.1

Ventilation System in the Tunnel

The mean velocity measured in the cross section of the tunnel should be **1.368** m/s

Flow Rate	9500	m3/h	Density	Heat	Specific
Rotational Speed	1450	rpm	Density	Conductivity	Heat
Voltage	380	Volt	kg/m3	W/(m*K)	kJ/(kg*K)
Motor Power	370	Watt	1900	1.1	1.05

Dimensions in mm

3. Experimental Work

Water Spray

Water Pressure	Water	Flow Rate	Discharge Coefficient	Nozzle Orifice Diameter	Nozzle Orifice Area	Initial Velocity	Dv 50
Мра	l/min	m3/min	lpm/Mpa^0.5	mm	m2	m/s	μm
0.5	0.92	0.00092	0.411	1.2	1.13094E-06	13.558	137
0.7	0.97	0.00097	0.366	1.2	1.13094E-06	14.295	120
0.9	1.055	0.001055	0.351	1.2	1.13094E-06	15.548	112

4. Numerical Set-Up

Mesh

Expression used $\frac{D^*}{\delta x}$ where D* is a characteristic fire diameter and δx is the nominal size of a mesh cell.

$$D^* = \left(\frac{Q}{\rho \ C \ T \ \sqrt{g}}\right)^{\frac{2}{5}}$$

 $D^*/\delta x$ value ranges between 4 and 16.

			Г	Adjustment																
								Î			Coarse Me	esh								
									x (m)	Nº Cell X	Nº Cell Y	Nº Cell Z	Total Cell							
		Coorres	Maah					0.075	40	40	32	51200								
		Coarse	mesn	Fine	Mesn	Renned	Mesn													
HRR (kW)	D*	$D^* _{\mathbf{v}} (mm) _{\mathbf{D}^*/8\mathbf{v}}$	D*/8v	v (mm)	D*/Sv	x (mm)	u(mm) D*/Su				Fine Mes	h								
		x (mm)			D / 0X				x (m)	Nº Cell X	Nº Cell Y	Nº Cell Z	Total Cell							
2244		0.000						-	_							0.05	60	60	48	172800
384.1	0.655	0.082	8	0.055	12	0.041	16													
								Refined Mesh												
									x (m)	Nº Cell X	Nº Cell Y	Nº Cell Z	Total Cell							

0.04

75

75

60

337500

4. Numerical Set-Up

Mesh

The **re-fined** mesh is selected – with **466875** cells per core (HPC)

Cell Size (m)	X Axe Length (m)	Y Axe Length (m)	Z Axe Length (m)	Total
0.04	30	3.32	2.4	3735000

For the simulations of **spray nozzles and fire with ventilation**, the mesh cell size has been **decreased** from the **re-fined mesh** to the **fine mesh** (Max time HPC 72 Hrs)

Cell Size (m)	X Axe Length (m)	Y Axe Length (m)	Z Axe Length (m)	Total
0.05	30	3.32	2.4	1912320

The **re-fined** mesh is selected – with **239040** cells per core (HPC)

5. List of Simulations

Main Simulations		Γ	Simulation			Ctaga		Fina	Vantilation		Spra	y Nozz	le
			1	Tag		Stage		rne	ventilation	Α	ctivated	Pre	ssure (MPa)
Re-Fined Mesh				-	Single Dhase			Yes	No		No		-
				-	Single-Filase		lase ,	Yes	Yes		No		-
	<u> </u>							Yes	Yes		Yes		0,5
Fine	e Mesh <			2C1	Μu	ılti-Ph	ase 🔄	Yes	Yes		Yes		0,7
				3C1				Yes	Yes		Yes		0,9
Sensitivity Analysis -	Cell Size		Ci			F ine	Vantilat		Sp	ray N	ozzle		Maala
			51	mulation I	ag	Fire	ventilat	tion	Activated		Pressure (MPa)	Mesh
				1A					Yes		0,5		
				2A		No	No		Yes		0,7		Coarse
			3A						Yes		0,9		
Po Fino	Moch		1B 2B 3B 1C 2C				o No		Yes		0,5		Fine
					No	No			Yes		0,7		
									Yes		0,9		
									Yes		0,5		Re-Fined
					No		No		Yes		0,7		
Sensitivity Analysis				3C					Yes		0,9		
N° Droplets													
	Simulation		liro	Ventilatio	n		Sp	pray N	lozzle		Mash	N	Droplets
	Simulation		me	Ventilatio	11	А	ctivated		Pressure (M	Pa)	Mesh	IN	Diopiets
	3C-0												5000
	3C-05												10000
	3C-06												20000
	3C-07										Re-		30000
Re-Fined Mesh	3C-08]	No	No			Yes		0,9		Fined		40000
	3C-09												50000
	3C-1												100000
	3C-2												150000
	3C-3											200000	

Fire & Ventilation

----- Smoke at 26m ------ Smoke at 28m ------ Smoke at 30m

Multiphase – S. Analysis

Centreline Velocity @ 0.9 MPa

				Resul	ts				
Nº of Droplets	5000	10000	20000	30000	40000	50000	100000	150000	200000
% of Variation	21.7	18	10.3	8.56	8.24	6.85	0.67	0.9	-

Spray Nozzle & Fire

Spray Nozzle & Fire

Network Spray Nozzle and Fire with Ventilation

1C1, 2C1 & 3C1

Network Spray Nozzle and Fire with Ventilation

The nozzle configuration 2C1 and 3C1 have the best performance regarding with the increase of the average free smoke height, which one correspond to an average of 0.5m.

1C1, 2C1 & 3C1

Air Inlet

Network Spray Nozzle and Fire with Ventilation

The nozzle configuration 2C1 and 3C1 have the best performance regarding with the increase of the average free smoke height, which one correspond to an average of 0.6m.

1C1, 2C1 & 3C1

Network Spray Nozzle and Fire with Ventilation

The nozzle configuration 2C1 and 3C1 have the best performance regarding with the increase of the average free smoke height, which one correspond to an average of 0.4m.

1C1, 2C1 & 3C1

Air Inlet

Network Spray Nozzle and Fire with Ventilation

1C1, 2C1 & 3C1

Thus, the nozzle configuration 2C1 and 3C1 have the best performance regarding with the increase of the average free smoke height, which one correspond to an average of 0.3m.

Air Inlet

Network Spray Nozzle and Fire with Ventilation

1C1, 2C1 & 3C1

7. Conclusions

As a general analysis:

• The most accurate results correspond to the re-fined mesh. However, **the fine mesh can be still used for calculations** allowing to reduce the computational time, with **variations** in the results between **0.1% and 5%**.

Evaluating the interaction of the spray nozzles and the longitudinal ventilation, it is possible to argue that:

- The nozzle system with the lowest injection pressure present the lowest increment in the smoke free height.
- The arrangement of spray nozzles with 0.7 and 0.9 MPa present the best performance related with the increment in the smoke free height.
- When the longitudinal ventilation system is operating, the average free smoke height corresponds to 0.6m. On the other hand, when the spray nozzle system is activated, the average free smoke height increases from 0.6m average to 0.8-1.0m average.

7. Conclusions

Regarding with the heat absorbed:

- Without the longitudinal ventilation working, the systems simulated have changed the injection pressure in 22% approximately and the flow in 10% approximately, the heat absorbed have only changed in 6% approximately.
- With the longitudinal ventilation working, the systems simulated have changed the injection pressure in 22% approximately and the flow in 10% approximately, the heat absorbed have only changed in 9% approximately.

Regarding with Tunnel Safety:

- Combining the longitudinal ventilation with a system of spray nozzles could allow to decrease the air temperature downstream from the fire. Hence, the structure, components and others would present lower temperatures and could avoid thermal damage.
- Despite that the longitudinal ventilation system in a tunnel are designed to fulfil life evacuation criteria upstream from the fire, the combination with the spray nozzles would improve the tenability conditions downstream from to fire for the people, tunnel operators or firefighters.

Thank You