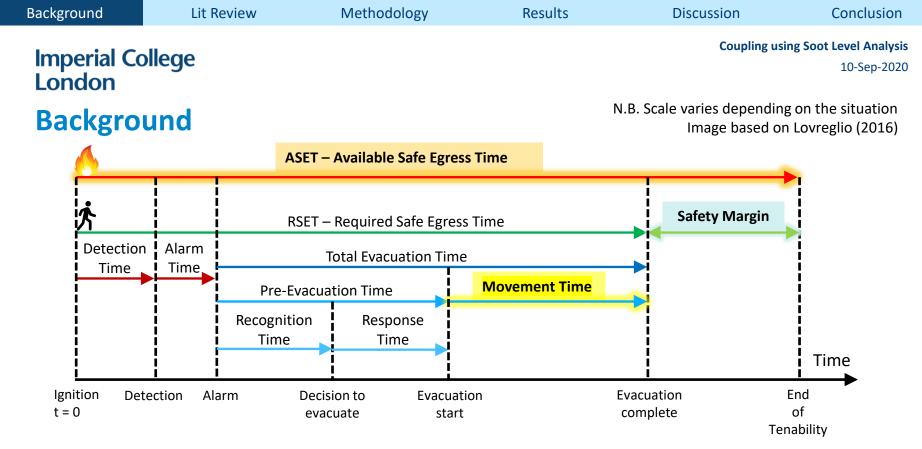
Coupling using Soot Level Analysis 10-Sep-2020

Imperial College London

Coupling of Evacuation and Fire Modelling through Soot Level Analysis


5th Fire and Evacuation Modeling Technical Conference (FEMTC) September 9th - 11th, 2020

He-in Cheong, Kelvin Loh Chu Xian, Arnab Majumdar, Washington Yotto Ochieng

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	llege			Coupling usi	ng Soot Level Analysis 10-Sep-2020

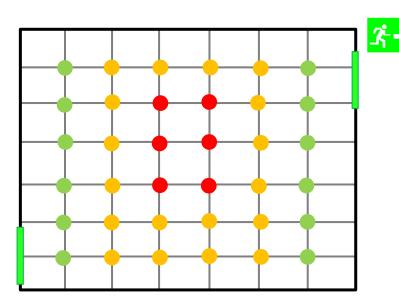
Outline

- 1. Background
- 2. Literature review
- 3. Proposed methodology
- 4. Comparison of the methodologies
 - a. Results
 - b. Discussion
- 5. Conclusion

Source: Lovreglio, R. (2016). Modelling Decision-Making in Fire Evacuation based on Random Utility Theory. PhD Thesis. https://doi.org/10.13140/RG.2.1.1695.5281/1

Background	Lit Review	Methodology	Results	Discussion	Conclusion		
Imperial Co London	ollege			Coupling usi	ng Soot Level Analysis 10-Sep-2020		
Backgro	und						
Typical ten	ability conditio	ns:					
1. Visibilit	У						
2. FED / C	O Concentratio	n	Removed for confidential reasons				
3. Temper	ature		Removed for C	onnuentiai reasor	15		
4. Smoke	layer temperatu	ire					
Source: National Fire Protection Association (2017). NFPA 130: Standard for Fixed Guideway Transit and Passenger Rail Systems. Quincy, MA: National Fire Protection Association, 2017.		issenger Rail					
Cheong, Loh, Majumda	r, Ochieng	5th Fire and Evacuat	ion Modeling Technical Co	nference	Slide 4 / 32		

Background	Lit Review	Methodology	Results	Discussion	Conclusion	
Imperial Co London					ing Soot Level Analysis 10-Sep-2020	
Backgro	und Prev	ious coupling with	i commercial so	oftware in the ind	lustry:	
Fire	Fire Dynamics Simulator (FDS), NIST			SMARTFIRE, FSEG, The University of Greenwich		
> STEPS, M	er, Thunderhead Eng 1ott MacDonald S+Evac), NIST	ineering	buildingEXOI FSEG, The Ur	DUS, niversity of Greenwich		
 Sources: Thunderhead Engineering, 2020. Coupling Pyrosim Fire Results And Pathfinder Movement. [online] Thunderhead Engineering. Available at: <https: coupling-pyrosim-pathfinder="" pathfinder="" support.thunderheadeng.com="" tutorials=""></https:> [Accessed 1 August 2020]. Korhonen, T. (2018). Fire Dynamics Simulator with Evacuation: FDS+Evac Technical Reference and User's Guide (FDS 6.6.0, Evac 2.5.2, DRAFT), VTT Technical Research Centre, Finland. Fridolf, K., Ronchi, E., Nilsson, D. & Frantzich, H. (2013) Movement speed and exit choice in smoke-filled rail tunnels. Fire Safety Journal. [Online] 59, 8–21. Available fr doi:10.1016/j.firesaf.2013.03.007. Ronchi, E., Gwynne, S.M.V., Purser, D.A. & Colonna, P. (2012) Representation of the Impact of Smoke on Agent Walking Speeds in Evacuation Models. Fire Technology [Online] 49 (2), 411–431. Available from: doi:10.1007/s10694-012-0280-y. Sargant, T., Nightingale S., Disdale-Young, O. & Ganeshalingam, J. (2014). Evacuation Modeling in Road Tunnel Fire Events – CFD Influencing Evacuation Results. FEMT 2014. Rådemar, D., Blixt, D., Debrouwere, B., Melin, B.G. & Purchase, A. (2017). Practicalities and Limitations of Coupling FDS with Evacuation Software. WSP Sweden. Galea, E.R., Wang, Z., Veeraswamy, A., Jia, F., Lawrence, P.J. and Ewer, J. (2008). Coupled Fire/Evacuation Analysis of the Station Nightclub Fire. Fire Safety Science 9: 4 476. doi:10.3801/JAFSS.FSS.9-465. 						
Cheong, Loh, Majumdar	r, Ochieng	5th Fire and Evacuation	n Modeling Technical Co	nference	Slide 5 / 31	


Background	Lit Review	Methodology		Results	Discussion	Conclusion	
Imperial Co London	ollege				Coupling using	Soot Level Analysis 10-Sep-2020	
Background Previous coupling with commercial software in the industry:							
Fire Dynamics Simulator (FDS), NIST			SMARTFIRE, FSEG, The University of Greenwich				
> STEPS, N	STEPS, Mott MacDonald				DUS, niversity of Greenwich		
Oas	sys Mass	Mot¶on	•				

Software Development Kit (SDK) (C++, C#, Java, <u>Python</u>)

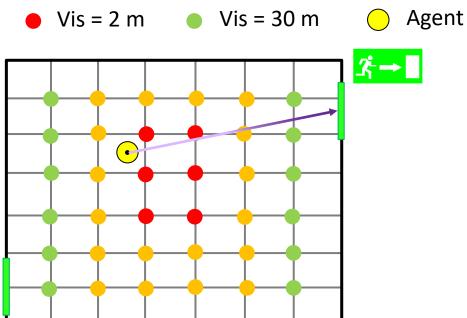
Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling usi	ing Soot Level Analysis 10-Sep-2020

Current practice in the industry

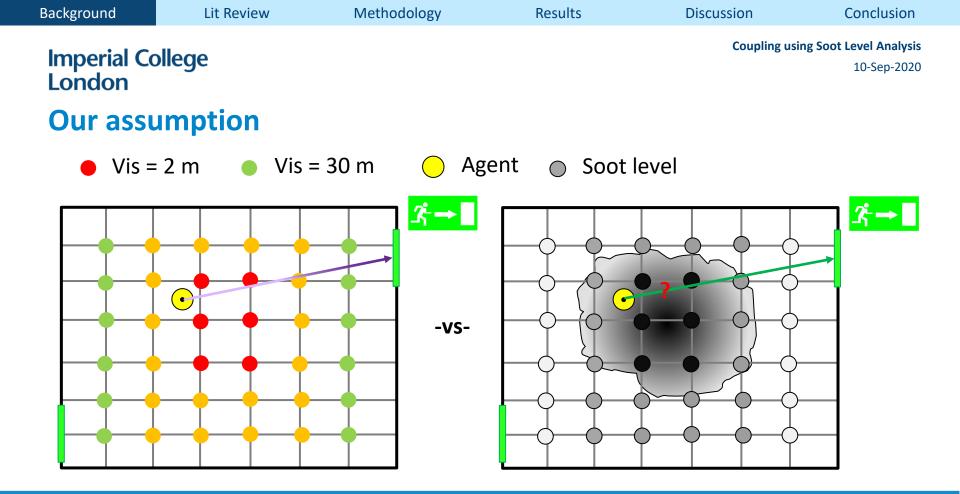
Vis = 2 m Vis = 30 m

Plan View at 2.5 m head height, as prescribed in NFPA 502 B.3.

B.3 Geometric Considerations. Some factors that should be considered in establishing a tenable environment in evacuation paths are as follows.

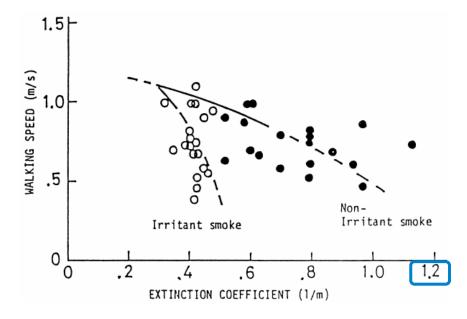

(1) The evacuation path requires a height clear of smoke of at least 2.0 m (6.56 ft). The current precision of modeling methods is within 25 percent. Therefore, in modeling methods a height of at least 2.5 m (8.2 ft) should be maintained

Source:


National Fire Protection Association. (2020) Standard for Road Tunnels, Bridges, and Other Limited Access Highways. NFPA 502. National Fire Protection Association (NFPA). Quincy, MA, USA.

5th Fire and Evacuation Modeling Technical Conference

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London Current	5	the industry		Coupling usin	ng Soot Level Analysis 10-Sep-2020

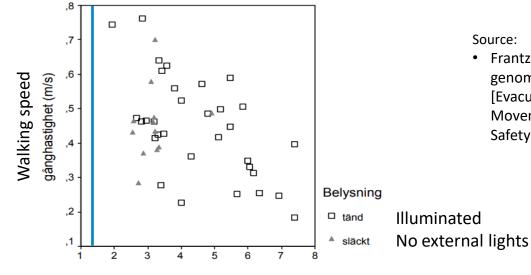


5th Fire and Evacuation Modeling Technical Conference

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling usi	ing Soot Level Analysis 10-Sep-2020
NA7-11 *	· · · · · · · · · · · · · · · · · · ·		· · · · / · ·	4070)	

Walking speed vs extinction coefficient (Jin, 1970)

$$Visibility = \frac{Constant}{extinction \ coefficient}$$


Source:

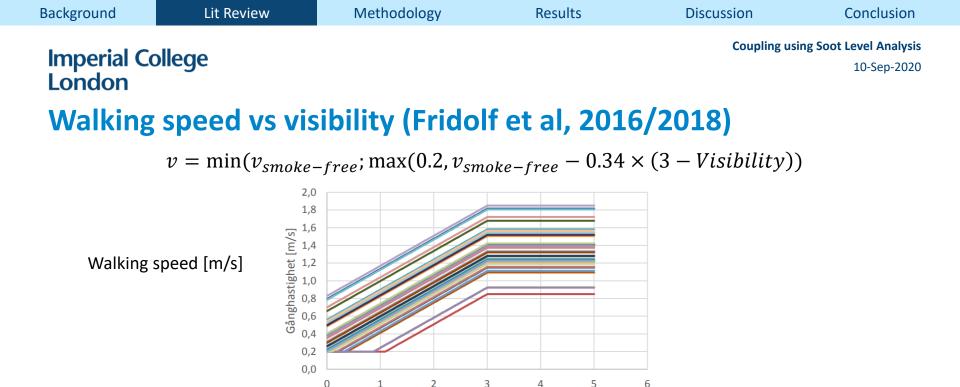
 Jin, T. (1970) Visibility through Fire Smoke, Bull. of Japanese Assoc. of Fire Science & Eng., 19, 2, (pp. 1– 8).

Imperial College London

Walking speed vs extinction coefficient (Frantzich and Nilsson, 2003)

Extinction coefficient k (1/m)

Source:


Frantzich, H., and Nilsson, D. (2003) Utrymning genom tät rök: beteende och förflyttning, [Evacuation in dense smoke: Behaviour and Movement] 75 p., Report 3126, Department of Fire Safety Engineering, Lund University, Sweden

Cheong, Loh, Majumdar, Ochieng

5th Fire and Evacuation Modeling Technical Conference

Slide 11 / 31

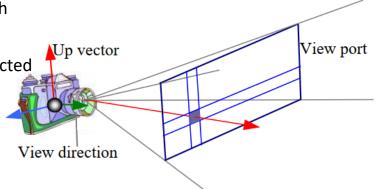
10-Sep-2020

Siktsträcka [m]

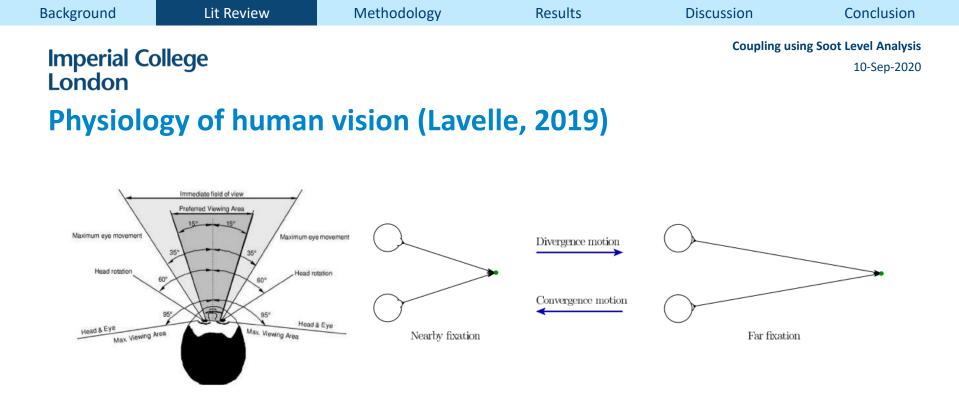
Fridolf, K., Nilsson, D., Frantzich, H., Ronchi, E. & Arias, S. (2016). Människors gånghastighet i rök: Förslag tillrepresentation vid brandteknisk

Fridolf, K., Nilsson, D., Frantzich, H., Ronchi, E. & Arias, S. (2018). Walking Speed in Smoke: Representation in Life Safety Verifications.

Source:


projektering.

Visibility [m]


Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling usi	ng Soot Level Analysis 10-Sep-2020
Ray trac	ing method	(Kang, 2005)			

- Kang (2005) proposed having a camera is set up at a given location to cast rays and simulate how it propagates through space.
- A raster image is created with dimmed pixels for waves affected by smoke.
- Visibility is deduced based obscurity levels using Bouguer-Lambert-Beer Law,

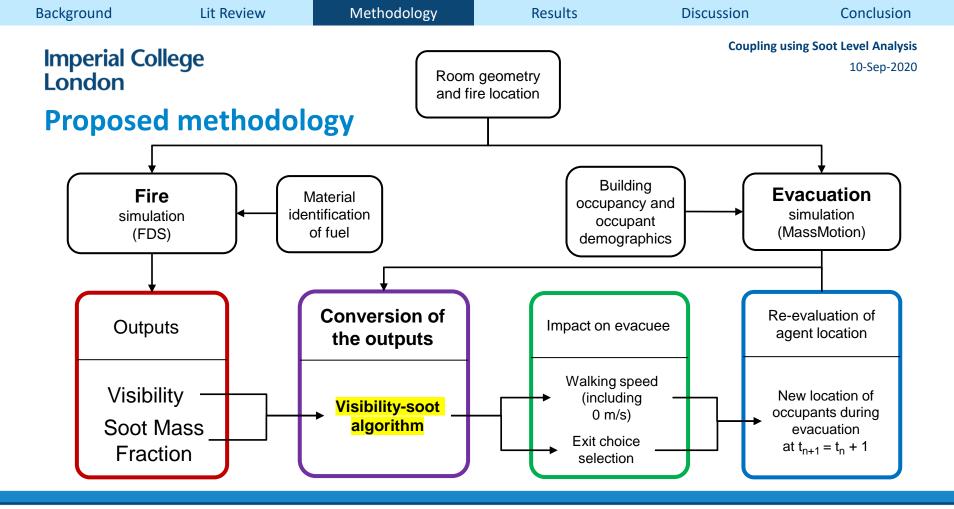
$$I = I_0 exp(-s\alpha_m \sum_{i=1}^n \rho_i \omega_{s,i}) \le I_t$$

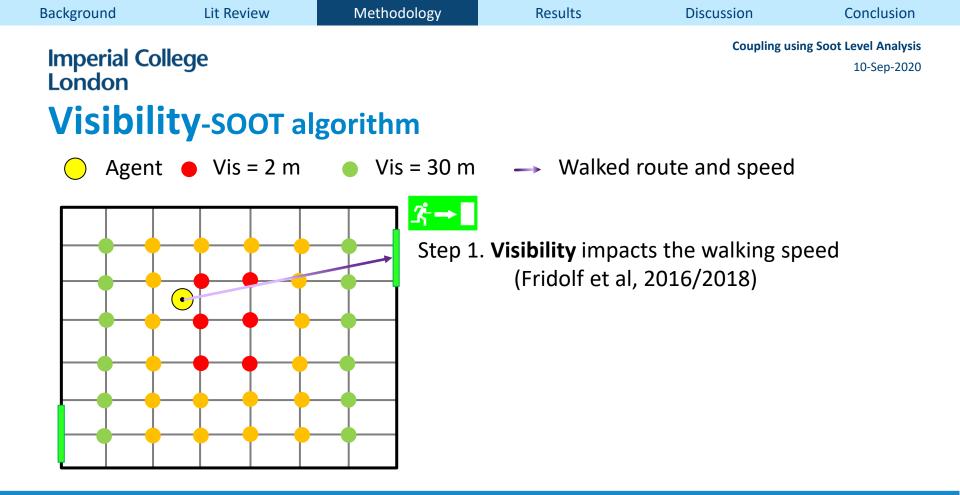

Source: Kang, K (2005) Modeling Smoke Visibility in CFD. Fire Safety Science 8: 1265-1276. doi:10.3801/IAFSS.FSS.8-1265

Source: Lavelle, S. (2019) The Physiology of Human Vision. Virtual Reality. University of Oulu. Cambridge University Press.

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020

Virtual visibility (He, 2009)

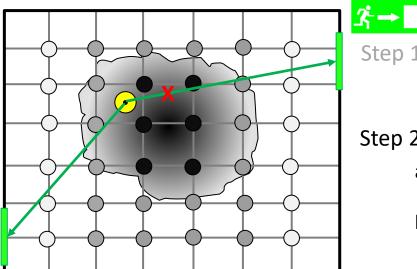



- He (2009) evaluates tenability (not the impact on the walking speed) based on the average extinction coefficient along the line of sight
- Virtual visibility, S_{aL}

 $S_{aL} = \frac{Constant}{average \ extinction \ coefficient, K_{aL}}$

 $K_{aL} = \frac{1}{d} \int_0^d K(s) ds$

Source: He, Y. (2009) Evaluating visibility using FDS modelling result [online]. In: FSE09: Fire Safety Engineering International Conference: Charting the Course. Melbourne, Vic.: Engineers Australia Society of Fire Safety: [77]-[88]. Availability: https://search.informit.com.au/documentSummary;dn=932351910776036;res=IELENG> ISBN: 9780977559640. [cited 28 Aug 20].



Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020

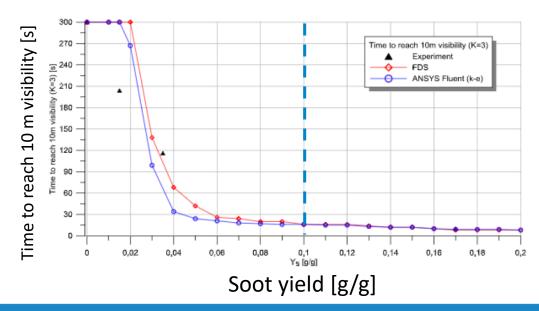
Visibility-SOOT algorithm

- Agent
- Soot level

→ Line of sight at head height

Step 1. Visibility impacts the walking speed (Fridolf et al, 2016/2018)

Step 2. **Soot level** impacts the exit choice


- a. Shoot a single ray at head height to all the exits in a line of sight
- b. Compare the maximum soot mass fraction to a <u>threshold</u> to select the exit

Results

Coupling using Soot Level Analysis 10-Sep-2020

Imperial College London

Visibility-**SOOT** algorithm – soot yield threshold Wegrzynski, W. & Vigne, G. (2017)

"[...] the value of soot yield below approximately 0.10 g/g should be used with extremely cautiousness when performing an ASET/RSET exercise."

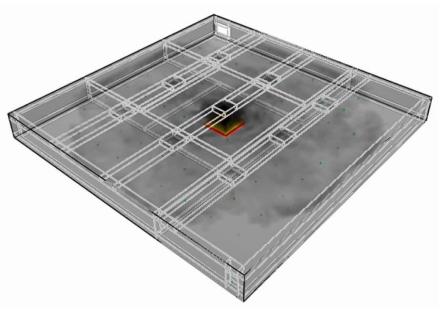
Source:

Wegrzynski, W. & Vigne, G. (2017) Experimental and Numerical Evaluation of the Influence of the Soot Yield on the Visibility in Smoke in CFD Analysis. Fire Safety Journal. 91 389-398. Available from: https://doi.org/10.1016/j.firesaf.2017.03.053.

5th Fire and Evacuation Modeling Technical Conference

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020

Geometry


- 50m x 50m open plan room
- 2 exits 2m and 4m wide
- Ventilation system
- Fire source: Sofa with HRR of 3MW
- 30 agents
- 300 second pre-evacuation time
- 7 entry portals

Similar to the geometry from Fang et al. (2010)

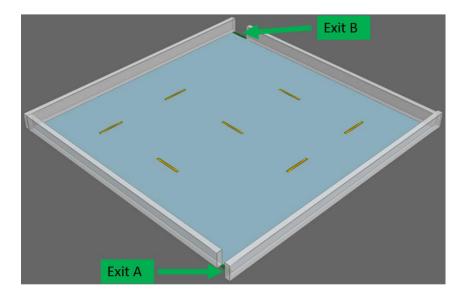
Sources:

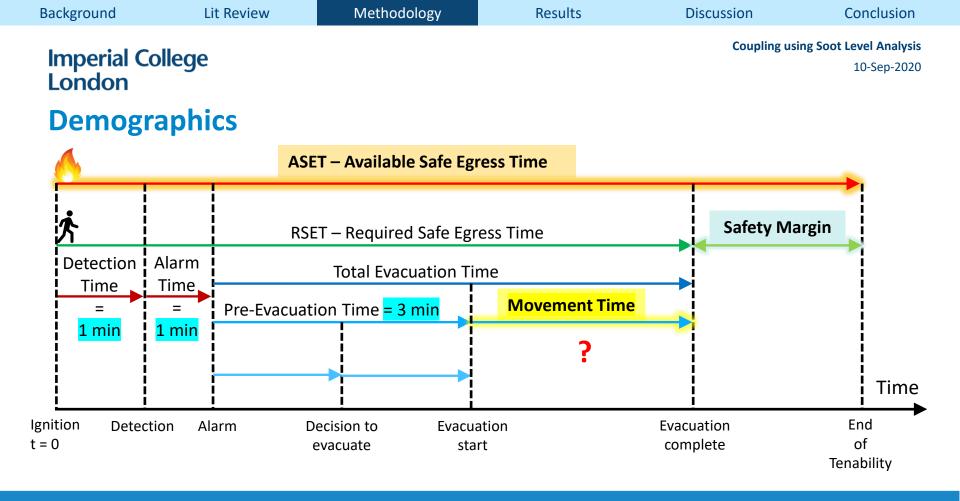
HM Government of United Kingdom. The Building Regulations 2010. Approved Document B. Fire Safety. Volume 1: Dwellings. 2019 edition – for use in England. United Kingdom; 2019.

Fang, Z.-M., Song, W.-G., Zhang, J. & Wu, H. (2010) A Multi-Grid Model for Evacuation Coupling with the Effects of Fire Products. Fire Technology. [Online] 48 (1), 91–104. Available from: doi:10.1007/s10694-010-0173-x.

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020

Geometry


- 50m x 50m open plan room
- 2 exits 2m and 4m wide
- Ventilation system
- Fire source: Sofa with HRR of 3MW
- 30 agents
- 300 second pre-evacuation time
- 7 entry portals


Similar to the geometry from Fang et al. (2010)

Sources:

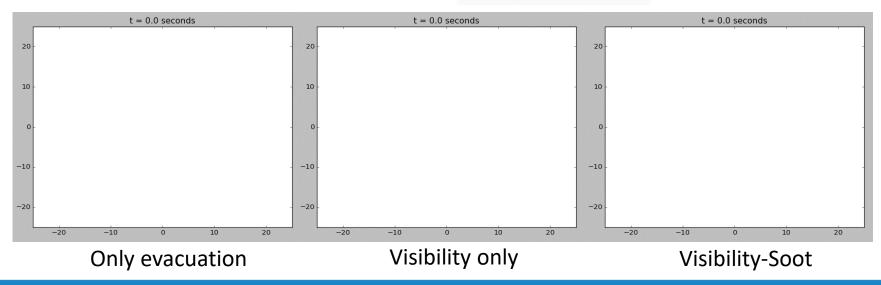
HM Government of United Kingdom. The Building Regulations 2010. Approved Document B. Fire Safety. Volume 1: Dwellings. 2019 edition – for use in England. United Kingdom; 2019.

Fang, Z.-M., Song, W.-G., Zhang, J. & Wu, H. (2010) A Multi-Grid Model for Evacuation Coupling with the Effects of Fire Products. Fire Technology. [Online] 48 (1), 91–104. Available from: doi:10.1007/s10694-010-0173-x.

Cheong, Loh, Majumdar, Ochieng

5th Fire and Evacuation Modeling Technical Conference

Slide 22 / 31


Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020

1. Background

Outline

- 2. Literature review
- 3. Proposed methodology
- 4. Comparison of the methodologies
 - a. Results
 - **b.** Discussion
- 5. Conclusion

Background	Lit Review	Methodology	Results	Discussion	Conclusion
	Agent movem Plan view of the after pre-evacu	room		Coupling u	sing Soot Level Analysis 10-Sep-2020

Cheong, Loh, Majumdar, Ochieng

5th Fire and Evacuation Modeling Technical Conference

Slide 24 / 31

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London Results	Imperial College London Agent paths			Coupling us	ing Soot Level Analysis 10-Sep-2020
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					
Only	y evacuation	Visibili	ty only	Visibility-S	Soot

5th Fire and Evacuation Modeling Technical Conference

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial College LondonFruin DensityResultsPlan view of the room				Coupling usi	ing Soot Level Analysis 10-Sep-2020
Maximum Der	nsity (LOS Fruin)				
(Only evacuation	Visibili	ty only	Visibility-S	Soot

Cheong, Loh, Majumdar, Ochieng

5th Fire and Evacuation Modeling Technical Conference

Slide 26 / 31

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020

Results

Key areas	Base model	Visibility only	Visibility-Soot Method
Computational runtime	2.574 seconds	111.863 seconds	166.549 seconds
Total movement time	46.6 seconds	176.7 seconds	137.0 seconds
Exit selection	47% choose exit A 53% choose exit B	47% choose exit A 53% choose exit B	43% choose exit A 57% choose exit B
Density analysis	Smaller high-density areas at the exits with higher densities experienced on the paths	Larger high-density areas at the exits.	Largest high-density areas at the exits.

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	sing Soot Level Analysis 10-Sep-2020

Discussion

- Incorporating soot level analysis provides a different evacuation dynamic
- The increase in runtime justifies the analysis

Next steps

- Verification and validation
- Soot level threshold evaluation
- Use of different geometry
- Stochastic analysis

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling usi	ng Soot Level Analysis 10-Sep-2020
Summar	V				

- Soot level analysis was incorporated for evacuation modelling.
- One-way coupling of fire (FDS) and evacuation (MassMotion) has been applied.
- Results show there is a different evacuation dynamic when evacuees consider the soot level along the line of sight to the exit rather than just the local values.
- Soot level threshold needs to be investigated further.

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling us	ing Soot Level Analysis 10-Sep-2020
Acknowl	ledgments				
The authors	s would like to th	nank:			College

Oasys

Zeena Farook

Imperial College London

- Robert Houghton
- Kamil Riedel
- Alexander Thebelt

- ARUP .
- Amir Pournasr

Background	Lit Review	Methodology	Results	Discussion	Conclusion
Imperial Co London	ollege			Coupling usi	ing Soot Level Analysis 10-Sep-2020

Thank you.

Contact: <u>he-in.cheong08@imperial.ac.uk</u>

Cheong, Loh, Majumdar, Ochieng

5th Fire and Evacuation Modeling Technical Conference

Slide 31 / 31