The FDS Pressure Equation Intuitive Understanding and Solution Strategies

Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin - Germany

Next Generation Fire Engineering

Agenda

The FDS pressure equation

Design principles of different pressure solvers

Presentation of different pressure solvers

Dr. Susanne Kilian

The FDS Pressure Equation

Changes of velocity field with time due to thermodynamic quantities

Dr. Susanne Kilian

Influence of gravity, particle drag, viscosity, perturbation pressure

The FDS Pressure Equation

Dr. Susanne Kilian

FEMTC 2020 — The FDS Pressure Equation

Right hand side abbreviated, computed by FDS

Elliptic Poisson equation

Bernoulli pressure H

 $H \equiv |\mathbf{u}|^2/2 + \tilde{p}/\rho$

only perturbation pressure

Divergence of pressure gradient field

Dr. Susanne Kilian

FEMTC 2020 — The FDS Pressure Equation

$-\nabla^2 H = R$

 $= \operatorname{div} (\operatorname{grad} H)$

2D-Example pressure field H(x,y)

Dr. Susanne Kilian

FEMTC 2020 — The FDS Pressure Equation

Negative gradient $-\nabla H$

Positive divergence

Vectors are oriented outwards in all directions, flow diverges (kind of source)

Dr. Susanne Kilian

7

Negative divergence

Vectors are oriented inwards from all directions, flow converges (kind of sink)

Dr. Susanne Kilian

Zero divergence

In- and outgoing vectors are evenly balanced (kind of balance)

Dr. Susanne Kilian

Local measure of how much the flow field expands/contracts

Dr. Susanne Kilian

Discretization by Finite Differences

Dr. Susanne Kilian

FEMTC 2020 — The FDS Pressure Equation

 h^2

Values in cell centers

$H_{i,k-1} + H_{i-1,k} - 4H_{i,k} + H_{i+1,k} + H_{i,k+1} = R_{i,k}$ h^2

 $-\nabla^2 H = R$

+ Boundary conditions

Discretization by Finite Differences

Dr. Susanne Kilian

FEMTC 2020 — The FDS Pressure Equation

 $\overline{h^2}$

Analytical equation

Ax = b

Algebraic system

Numerical solution

Dr. Susanne Kilian

FEMTC 2020 — The FDS Pressure Equation

Agenda

The FDS pressure equation

Design principles of different pressure solvers

Presentation of different pressure solvers

Dr. Susanne Kilian

Discretization types

Rectangular mesh with obstruction

Dr. Susanne Kilian

FEMTC 2020 — Design principles of different pressure solvers

Cell-centered values of H

•	•	•	•	•
•	•	٠	•	•
•	•	٠	•	•
•	•	●	•	•
•	●	●	•	•

Discretization types

Structured

Obstructions included, part of matrix A

Dr. Susanne Kilian

Discretization types

Structured

Very efficient solvers, but not correct at obstructions

Unstructured

Less efficient solvers, but correct at obstructions

Sparsity:

many zero entries

less cells, different patterns

Data exchange types

Only Locally

Information is exchanged only between neighbouring meshes

Different degrees of coupling of the whole solution

Dr. Susanne Kilian

Locally and globally

Information is exchanged between all meshes

New information (e.g. air blown in, fire ignited)

Single mesh case

Dr. Susanne Kilian

Cell values are defined as neighboring averages

New information (e.g. air blown in, fire ignited)

Single mesh case

Dr. Susanne Kilian

- Cell values are defined as neighboring averages
- Continuous chain of information, neighbor by neighbor

New information (e.g. air blown in, fire ignited)

Single mesh case

Dr. Susanne Kilian

FEMTC 2020 — Design principles of different pressure solvers

- Cell values are defined as neighboring averages
- Continuous chain of information, neighbor by neighbor

New information (e.g. air blown in, fire ignited)

Single mesh case

Dr. Susanne Kilian

FEMTC 2020 — Design principles of different pressure solvers

- Cell values are defined as neighboring averages
- Continuous chain of information, neighbor by neighbor

New information (e.g. air blown in, fire ignited)

Single mesh case

- Cell values are defined as neighboring averages
- Continuous chain of information, neighbor by neighbor

FEMTC 2020 — Design principles of different pressure solvers

New information (e.g. air blown in, fire ignited)

Single mesh case

- Cell values are defined as neighboring averages
- Continuous chain of information, neighbor by neighbor

New information (e.g. air blown in, fire ignited)

Single mesh case

Dr. Susanne Kilian

- Cell values are defined as neighboring averages
- Continuous chain of information, neighbor by neighbor
- Perceived by all cells in only ONE Poisson solution

What happens for long domains subdivided into meshes?

Multi mesh case

Dr. Susanne Kilian

1. Pass: Information is first trapped in mesh 1

1. Poisson solution

Dr. Susanne Kilian

2. Pass: Information can only reach mesh 2

Dr. Susanne Kilian

3. Pass: Information can only reach mesh 3

Dr. Susanne Kilian

4. Pass: Information finally reaches mesh 4

Delay in information transfer

Dr. Susanne Kilian

Agenda

The FDS pressure equation

Design principles of different pressure solvers

Presentation of different pressure solvers

Dr. Susanne Kilian

FFT - FDS Default

Situation in FDS: Rectangular meshes with uniform grid size

Structured

Local data exchanges

Dr. Susanne Kilian

Eigenvectors known on every mesh (sines/cosines)

Local Fast Fourier Transformations

Compute local solutions as linear combination of eigenvectors and couple them locally

Highly efficient, but not quite accurate at obstructions and mesh interfaces

32

Solution of Ax = b is equivalent to minimum of

$$Q(x) := \left[\frac{1}{2}x^T A x - x^T b\right]$$

	7	

Dr. Susanne Kilian

FEMTC 2020 — Presentation of different pressure solvers

Solution of Ax = b is equivalent to minimum of

$$Q(x) := \left[\frac{1}{2}x^T A x - x^T b\right]$$

Build sequence of iterates to find minimum of Q(x)

Accurate and robust, but slow due to many iterations and global exchanges

	7	

- Hierarchy of grids to better map local and global effects
- Coarsening based on doubling of mesh width (restricted to even cell numbers!)
- Small obstructions may not fit into coarser grids
- Accurate and small number of iterations, but expensive global data exchanges

	7	

Algebraic Multigrid

More levels possible

Dr. Susanne Kilian

FEMTC 2020 — Presentation of different pressure solvers

Combine cells into clusters reflecting matrix stencil

		7		

Algebraic Multigrid

More levels possible

Dr. Susanne Kilian

FEMTC 2020 — Presentation of different pressure solvers

Combine cells into clusters reflecting matrix stencil

More flexible because arbitrary cell numbers and obstructions can be mapped

Accurate, very small number of iterations, but slow due to global data exchanges

		7		

Algebraic multigrid - 3D example

Algebraic multigrid - 3D example

1. coarsening level

Presentation of different pressure solvers

Algebraic multigrid - 3D example

1. coarsening level

Obstruction can perfectly be mapped

McKenney-Greengard-Mayo

Structured problem

correct external boundaries

Efficient global structured solver can be applied

Dr. Susanne Kilian

Unstructured problem

correct internal & zero external boundaries

Many zero entries in RHS, may be exploited

Presentation of different pressure solvers

McKenney-Greengard-Mayo

1. Pass:

Dr. Susanne Kilian

FEMTC 2020 — Presentation of different pressure solvers

In progress, efficiency still to be analyzed

Thank you very much for your attention

Dr. Susanne Kilian

FEMTC 2020 — Presentation of different pressure solvers

