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3 Computational Civil Engineering, Bergische Universität Wuppertal, Germany

1 Fire Technology and Fire Safety Engineering, University of Wuppertal,

Germany
2 Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
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INTRODUCTION



Introduction

Topic: Inverse Modelling Of Bench-Scale Experiments

• estimates material parameters for pyrolysis simulation, e.g. to compute

flame spread

Focus: Cost Function

• determines the deviation between target data and a model response, e.g.

between experimental data and simulation results.

Several different cost functions are evaluated for estimating material parameter

sets that allow the simulation of pyrolysation of solid polymers.
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Inverse Modelling Process
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Inverse Modelling Process

Talks In The Past I
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Inverse Modelling Process
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2014
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Inverse Modelling Process

Talks In The Past III

Influence of Input Parameters on the Fire Simulation, FEMTC 2014

Trettin et al. [1]
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Inverse Modelling Process
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Inverse Modelling Process

Performance Analysis and Shared Memory Parallelization of FDS, FEMTC 2014

Arnold et al. [2]
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Inverse Modelling Process
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Inverse Modelling Process

Performance Of Optimization Algorithms For Deriving Material Data From

Bench Scale Tests, FEMTC 2016

Lauer et al. [3]
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MATERIALS AND METHODS

Inverse Modelling Process



Simulation Setup

Data Source

• Material: black poly methyl methacrylate (PMMA)

• Experimental Data:
• Thermogravimetrical Analysis (TGA)

• Heating rates: 1 K{min, 10 K{min and 50 K{min

• Atmosphere: Nitrogen

• Sample mass: 4–7 mg

• Sample geometry: Powdered

• Controlled Atmosphere Pyrolysis Apparatus II (CAPA II)

• Heat flux: 25 kW{m2, 60 kW{m2

• Atmosphere: Nitrogen

• Sample dimension: Diameter: 0.07 m, Thickness: 0.0058 m

• Source: Measurement and Computation of Fire Phenomena (MaCFP):

Condensed Phase Material Database [4]
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Simulation Setup

Reaction Kinetics

• Estimated from TGA

experimental data

• Obtained with inverse

modelling

• Parameters: reaction

kinetics (Arrhenius

model)

• Target: 3 different

heating rates

• Simulated with

pyrolysis model of FDS

• Modelled with two

independent reactions

• Estimation process not

covered in this talk [5]

Figure 1: Comparison between TGA experiments by

UMET [4] (Exp.) and the best parameter set of the

IMP run that determined the reaction kinetics

parameters (Sim.). 13



Simulation Setup

Thermophysical Properties

• Estimated from CAPA II experimental

data

• Obtained with inverse modelling

• Parameters: thermophysical

parameters (density, emissivity,

conductivity, specific heat capacity)

• Target: 25 kW{m2 heat flux

• Validation: 60 kW{m2 heat flux

• Pyrolysis model of FDS

• Reaction kinetics from TGA (see

above)

• Calculation conducted with three

different cost functions

• 25 repetitions of each IMP setup for

evaluation of robustness

Figure 2: Simplified FDS simulation

setup of the CAPA II, based on [5].
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Simulation Setup

Software

• Pyrolysis Model: Fire Dynamics Simulator [6]

• Inverse Modelling Framework: PROPTI [5, 7]
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MATERIALS AND METHODS

Evaluation Methods



Cost Function

Single Point

NRSE “
|ŷt ´ yt |

yt
(1)
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Cost Function

Threshold

THRmin “ min
!

|tt|ŷptq ą ypt0qu ´ t0|,maxt|tmin ´ t0|, |tmax ´ t0|u

)

{t0 (2)

THRmax “ min
!

|tt|ŷptq ă ypt0qu ´ t0|,maxt|tmin ´ t0|, |tmax ´ t0|u

)

{t0 (3)
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Cost Function

RMSE

RMSE “
1

yN
?
ny

g

f

f

e

ny
ÿ

t“1

p∆ytq2 with ∆y “ ŷt ´ yt (4)
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Cost Function

RMSE BANDS

RMSE “
1

yN
?
T

g

f

f

e

T
ÿ

t“1

p∆ytq2 with ∆y “

$

’

’

&

’

’

%

0 yt,lb ď ŷ ď yt,ub

ŷt ´ yt,lb ŷt ă yt,lb

ŷt ´ yt,ub ŷt ą yt,ub

(5)
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Cost Function

RMSE RANGE

RMSE “
1

yN
?
T

g

f

f

e

T
ÿ

t“1

p∆ytq2 with ∆y “

$

’

’

&

’

’

%

0 p1´ rqyt ď ŷ ď p1` rqyt

ŷt ´ p1´ rqyt ŷt ă p1´ rqyt

ŷt ´ p1` rqyt ŷt ą p1` rqyt
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Cost Function

Combination

E “
I

ÿ

i“0

pwi ¨ RMSEi q `

J
ÿ

j“0

pwj ¨ THRjq `

K
ÿ

k“0

pwk ¨ NRSEkq (7)
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Evaluation



Evaluated Cost Functions

• RMSE: mean experimental data

• RMSE RANGE: ˘5 % of experimental data

• RMSE BAND: uncertainty band provided with the experimental data
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Thermophysical Properties

Estimation with 25 kW{m2 case

Figure 3: Comparison between CAPA II experiment [4] and the best parameter sets of

the IMP runs with different cost functions.
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Thermophysical Properties

Validation with 60 kW{m2 case

Figure 4: Comparison between CAPA II experiment [4] and the best parameter sets of

the IMP runs with different cost functions as validation cases.
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Thermophysical Properties

Estimated Parameters

RMSE RANGE BANDS

best mean σ best mean σ best mean σ

fit 0.0892 0.0897 0.0002 0.0838 0.0846 0.0004 0.0417 0.0421 0.0002

ρa 1201.3 1204.5 1.3 1200.5 1205.0 3.1 1194.8 1196.0 0.8

a 0.1083 0.1133 0.0021 0.1075 0.1125 0.0037 0.1160 0.1213 0.0030

cp,a 2.6037 2.7065 0.0241 2.5920 2.6909 0.0268 2.6575 2.6986 0.0167

εa 0.9298 0.9694 0.0109 0.9322 0.9656 0.0139 0.9451 0.9691 0.0110

∆h 669.2 704.3 12.3 676.6 703.0 14.7 675.2 709.1 16.3
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Robustness

Figure 5: Cumulative minimum areas for the three cost functions over 25 repeated

IMP runs for each cost function. Note: The individual plots are not directly

comparable due to their different cost functions.
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Discussion

Specific Case I

Different cost functions are investigated with respect to their performance in

finding material parameter sets.

For the chosen example case here, none of the different cost functions

significantly outperforms any of the others.

The best parameter sets within each cost function group, as well as across

these groups, show nearly the same simulation response.

Looking at the cumulative minimum of the fitness values, none of the discussed

cost functions stands out in terms of how fast they converge to their respective

minimum.

Thus, no useful statement as to how fast convergence is reached can be made

here.
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Discussion

Specific Case II

For a larger number of optimisation parameters this behaviour might be

different.

Larger sampling limits for the individual parameters might have a stronger

effect on the convergence when choosing different cost functions.

Experiments were conducted in an inert atmosphere and in the simulations the

gas phase reactions were neglected. This could contribute to an oversimplified

modelling of the involved processes, leading to a more trivial case.

28



Discussion

Generic Considerations

A cost function that uses an area as a target, provides means to incorporate

the uncertainty observed in the experiments.

RMSE requires exact matches of the data points, while slight variations in the

other cases could still fall inside the target area. BANDS and RANGE could be

useful to account for variance that is encountered when repeating a single

experiment multiple times and allow for its representation during the IMP.

The ability to combine cost functions in different ways allows to target multiple

values, like heat release rate or surface temperature, and their unique features,

like heat release peaks on different experimental setups (e.g. different heat

fluxes or gas atmospheres), as these may be of crucial importance for the

real-scale applications, especially for flame spread modelling.
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Conclusion

Two newly implemented cost functions were evaluated against a commonly

used cost function.

They compare the modelled data against an area, not a data series.

No significant difference in performance, robustness and results was observed

for the investigated case.

Still, this is useful to take experimental uncertainty into account.

It might also provide an advantage in performance, robustness and results in

more complex cases.
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Zenodo Fire Safety Community

https://zenodo.org/communities/fire-safety-engineering-and-evacuation
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PROPTI

https://zenodo.org/record/1438349 32



Data set repository

https://zenodo.org/record/3987799 33



Fin

Thank you very much for your attention!
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